Prediksi Fluktuasi Harga Bitcoin Dengan Menggunakan Random Forest Classifier

Chang Hung, Jacky Filbert Wijaya, Victor Victor, Irpan Adiputra Pardosi, Frans Mikael Sinaga

Abstract


Bitcoin merupakan salah satu cryptocurrency paling berharga di dunia dan diperdagangkan di lebih dari 40 bursa di seluruh dunia dan menerima lebih dari 30 mata uang berbeda dengan 250.000 transaksi per hari. Dalam perdagangannya, Bitcoin menunjukkan fluktuasi pada pasar yang diperdagangkan, dalam hal ini fluktuasinya dapat mencapai 10 kali lebih tinggi daripada fluktuasi nilai tukar mata uang asing. Karena fluktuasi harga bitcoin yang masif dan tinggi, prediksi fluktuasi harga sangat dibutuhkan, terutama karena harga bitcoin bergerak dengan sangat acak. Untuk melalukan prediksi flutuktuasi harga, Random Forest classifier merupakan salah satu algoritma machine learning yang sering digunakan untuk prediksi, kesehatan, artificial intelligence, dll. K-means clustering juga dipergunakan untuk membantu algoritma random forest classifier dalam hal mengkluster data. Hasil dari penelitian ini yaitu melakukan prediksi terhadap naik atau turunnya harga bitcoin dengan akurasi sebanyak 71% yang didapatkan dari perbandingan hasil prediksi dan data asli dengan bantuan algoritma confusion matrix.

Keywords


Bitcoin; K-Means Clustering; Random Forest Classifier; Confusion Matrix

Full Text:

PDF

References


P. Zimmerman, “Blockchain structure and cryptocurrency prices,” 2020.

D. P. Sakas, N. T. Giannakopoulos, N. Kanellos, and S. P. Migkos, “Innovative cryptocurrency trade websites’ marketing strategy refinement, via digital behavior,” IEEE Access, vol. 10, pp. 63163–63176, 2022.

U. W. Chohan, “A history of bitcoin,” Available at SSRN 3047875, 2022.

S. McNally, J. Roche, and S. Caton, “Predicting the price of bitcoin using machine learning,” in 2018 26th euromicro international conference on parallel, distributed and network-based processing (PDP), IEEE, 2018, pp. 339–343.

S. Erfanian, Y. Zhou, A. Razzaq, A. Abbas, A. A. Safeer, and T. Li, “Predicting Bitcoin (BTC) Price in the Context of Economic Theories: A Machine Learning Approach,” Entropy, vol. 24, no. 10, p. 1487, 2022.

J. Chen, “Analysis of Bitcoin Price Prediction Using Machine Learning,” Journal of Risk and Financial Management, vol. 16, no. 1, p. 51, 2023.

D. G. Baur and T. Dimpfl, “The volatility of Bitcoin and its role as a medium of exchange and a store of value,” Empir Econ, vol. 61, no. 5, pp. 2663–2683, 2021.

Y. Sovbetov, “Factors influencing cryptocurrency prices: Evidence from bitcoin, ethereum, dash, litcoin, and monero,” Journal of Economics and Financial Analysis, vol. 2, no. 2, pp. 1–27, 2018.

D. Anastasiou, A. Ballis, and K. Drakos, “Cryptocurrencies’ price crash risk and crisis sentiment,” Financ Res Lett, vol. 42, p. 101928, 2021.

F. Kjærland, M. Meland, A. Oust, and V. Øyen, “How can bitcoin price fluctuations be explained?,” 2018.

O. Sattarov et al., “Recommending cryptocurrency trading points with deep reinforcement learning approach,” Applied Sciences, vol. 10, no. 4, p. 1506, 2020.

M. Poongodi, V. Vijayakumar, and N. Chilamkurti, “Bitcoin price prediction using ARIMA model,” International Journal of Internet Technology and Secured Transactions, vol. 10, no. 4, pp. 396–406, 2020.

E. Sin and L. Wang, “Bitcoin price prediction using ensembles of neural networks,” in 2017 13th International conference on natural computation, fuzzy systems and knowledge discovery (ICNC-FSKD), IEEE, 2017, pp. 666–671.

I. K. Nti, A. F. Adekoya, and B. A. Weyori, “A systematic review of fundamental and technical analysis of stock market predictions,” Artif Intell Rev, vol. 53, no. 4, pp. 3007–3057, 2020.

S. Patro and K. K. Sahu, “Normalization: A preprocessing stage,” arXiv preprint arXiv:1503.06462, 2015.

K. P. Sinaga and M.-S. Yang, “Unsupervised K-Means Clustering Algorithm,” IEEE Access, vol. 8, pp. 80716–80727, 2020, doi: 10.1109/ACCESS.2020.2988796.

M. Mathur, S. Mhadalekar, S. Mhatre, and V. Mane, “Algorithmic trading bot,” in ITM Web of Conferences, EDP Sciences, 2021, p. 03041.

S. Visa, B. Ramsay, A. L. Ralescu, and E. Van Der Knaap, “Confusion matrix-based feature selection.,” Maics, vol. 710, no. 1, pp. 120–127, 2011.

L. Khaidem, S. Saha, and S. R. Dey, “Predicting the direction of stock market prices using random forest,” arXiv preprint arXiv:1605.00003, 2016.

J. Dewani, M. Ghodawat, S. Vadhera, M. Patel, A. Mishra, and N. Kotha, “A research study on awareness regarding crypto currency among investors,” International Journal on Integrated Education, vol. 3, no. 3, pp. 114–125, 2020.

F. M. Sinaga, M. Jonas, and A. Halim, “Stock trend prediction using SV-kNNC and SOM,” in 2019 Fourth International Conference on Informatics and Computing (ICIC), IEEE, 2019, pp. 1–5.

C. Yuan and H. Yang, “Research on K-value selection method of K-means clustering algorithm,” J (Basel), vol. 2, no. 2, pp. 226–235, 2019.

S. Marsland, Machine learning: an algorithmic perspective. CRC press, 2015.

T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The elements of statistical learning: data mining, inference, and prediction, vol. 2. Springer, 2009.




DOI: https://doi.org/10.55601/jsm.v24i2.1024

Refbacks

  • There are currently no refbacks.