Prediksi Fluktuasi Harga Bitcoin Dengan Menggunakan Random Forest Classifier
Abstract
Keywords
Full Text:
PDFReferences
P. Zimmerman, “Blockchain structure and cryptocurrency prices,” 2020.
D. P. Sakas, N. T. Giannakopoulos, N. Kanellos, and S. P. Migkos, “Innovative cryptocurrency trade websites’ marketing strategy refinement, via digital behavior,” IEEE Access, vol. 10, pp. 63163–63176, 2022.
U. W. Chohan, “A history of bitcoin,” Available at SSRN 3047875, 2022.
S. McNally, J. Roche, and S. Caton, “Predicting the price of bitcoin using machine learning,” in 2018 26th euromicro international conference on parallel, distributed and network-based processing (PDP), IEEE, 2018, pp. 339–343.
S. Erfanian, Y. Zhou, A. Razzaq, A. Abbas, A. A. Safeer, and T. Li, “Predicting Bitcoin (BTC) Price in the Context of Economic Theories: A Machine Learning Approach,” Entropy, vol. 24, no. 10, p. 1487, 2022.
J. Chen, “Analysis of Bitcoin Price Prediction Using Machine Learning,” Journal of Risk and Financial Management, vol. 16, no. 1, p. 51, 2023.
D. G. Baur and T. Dimpfl, “The volatility of Bitcoin and its role as a medium of exchange and a store of value,” Empir Econ, vol. 61, no. 5, pp. 2663–2683, 2021.
Y. Sovbetov, “Factors influencing cryptocurrency prices: Evidence from bitcoin, ethereum, dash, litcoin, and monero,” Journal of Economics and Financial Analysis, vol. 2, no. 2, pp. 1–27, 2018.
D. Anastasiou, A. Ballis, and K. Drakos, “Cryptocurrencies’ price crash risk and crisis sentiment,” Financ Res Lett, vol. 42, p. 101928, 2021.
F. Kjærland, M. Meland, A. Oust, and V. Øyen, “How can bitcoin price fluctuations be explained?,” 2018.
O. Sattarov et al., “Recommending cryptocurrency trading points with deep reinforcement learning approach,” Applied Sciences, vol. 10, no. 4, p. 1506, 2020.
M. Poongodi, V. Vijayakumar, and N. Chilamkurti, “Bitcoin price prediction using ARIMA model,” International Journal of Internet Technology and Secured Transactions, vol. 10, no. 4, pp. 396–406, 2020.
E. Sin and L. Wang, “Bitcoin price prediction using ensembles of neural networks,” in 2017 13th International conference on natural computation, fuzzy systems and knowledge discovery (ICNC-FSKD), IEEE, 2017, pp. 666–671.
I. K. Nti, A. F. Adekoya, and B. A. Weyori, “A systematic review of fundamental and technical analysis of stock market predictions,” Artif Intell Rev, vol. 53, no. 4, pp. 3007–3057, 2020.
S. Patro and K. K. Sahu, “Normalization: A preprocessing stage,” arXiv preprint arXiv:1503.06462, 2015.
K. P. Sinaga and M.-S. Yang, “Unsupervised K-Means Clustering Algorithm,” IEEE Access, vol. 8, pp. 80716–80727, 2020, doi: 10.1109/ACCESS.2020.2988796.
M. Mathur, S. Mhadalekar, S. Mhatre, and V. Mane, “Algorithmic trading bot,” in ITM Web of Conferences, EDP Sciences, 2021, p. 03041.
S. Visa, B. Ramsay, A. L. Ralescu, and E. Van Der Knaap, “Confusion matrix-based feature selection.,” Maics, vol. 710, no. 1, pp. 120–127, 2011.
L. Khaidem, S. Saha, and S. R. Dey, “Predicting the direction of stock market prices using random forest,” arXiv preprint arXiv:1605.00003, 2016.
J. Dewani, M. Ghodawat, S. Vadhera, M. Patel, A. Mishra, and N. Kotha, “A research study on awareness regarding crypto currency among investors,” International Journal on Integrated Education, vol. 3, no. 3, pp. 114–125, 2020.
F. M. Sinaga, M. Jonas, and A. Halim, “Stock trend prediction using SV-kNNC and SOM,” in 2019 Fourth International Conference on Informatics and Computing (ICIC), IEEE, 2019, pp. 1–5.
C. Yuan and H. Yang, “Research on K-value selection method of K-means clustering algorithm,” J (Basel), vol. 2, no. 2, pp. 226–235, 2019.
S. Marsland, Machine learning: an algorithmic perspective. CRC press, 2015.
T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The elements of statistical learning: data mining, inference, and prediction, vol. 2. Springer, 2009.
DOI: https://doi.org/10.55601/jsm.v24i2.1024
Refbacks
- There are currently no refbacks.