Pengembangan Aplikasi Presensi Online Berbasis Mobile dengan Penerapan Geolocator dan Face Recognition pada CV. Global Mandiri

Muhammad Danu Prasetia, Ahmad Taufiq Gultom, Leticia Leticia, Florida N.S. Damanik, Sio Jurnalis Pipin

Abstract


Di era digital saat ini, keefektifan sistem presensi online berbasis mobile menjadi krusial bagi perusahaan dalam meningkatkan efisiensi dan akurasi pengelolaan kehadiran karyawan. CV. Global Mandiri, sebuah perusahaan penyedia barang dan jasa di Medan, menghadapi tantangan dalam sistem presensi konvensionalnya yang rentan terhadap kecurangan dan inefisiensi. Untuk mengatasi masalah ini, penelitian ini bertujuan untuk mengembangkan aplikasi presensi online yang mengintegrasikan teknologi geolocator dan Face Recognition, pada platform berbasis mobile. Penelitian ini menggunakan pendekatan System Development Life Cycle (SDLC) dengan metode Waterfall, meliputi tahapan pengumpulan data, analisis proses, analisis kebutuhan, perancangan, dan implementasi. Analisis proses dilakukan melalui wawancara terstruktur dengan pemilik perusahaan, bagian kepegawaian, dan karyawan, serta menggunakan activity diagram dan fish bone untuk mengidentifikasi masalah dalam sistem presensi yang ada. Hasil pengembangan aplikasi menunjukkan bahwa aplikasi presensi online dengan integrasi geolocator dan pengenalan wajah berhasil meningkatkan efisiensi pencatatan kehadiran karyawan dan mengurangi potensi kecurangan. Aplikasi ini memungkinkan karyawan untuk melakukan presensi di lokasi kerja dengan validasi lokasi dan identitas secara akurat, serta menghasilkan laporan kehadiran secara otomatis. Implementasi teknologi ini di CV. Global Mandiri berkontribusi pada peningkatan akurasi dan keandalan data kehadiran karyawan, yang merupakan langkah penting dalam menjaga integritas sistem presensi perusahaan.


Keywords


Sistem Presensi Online; Face Recognition; Geolocator; Efisiensi Kehadiran Karyawan

Full Text:

PDF

References


A. Y. Rukmana, L. Judijanto, S. J. Pipin, J. N. Ginting, E. Amalia, and H. Herlinah, Literasi Teknologi Informasi dan Komunikasi (TIK): Wawasan Komprehensif tentang Literasi TIK Terkini. PT. Sonpedia Publishing Indonesia, 2024.

M. Javaid, A. Haleem, R. P. Singh, S. Khan, and I. H. Khan, “Unlocking the opportunities through ChatGPT Tool towards ameliorating the education system,” BenchCouncil Transactions on Benchmarks, Standards and Evaluations, vol. 3, no. 2, p. 100115, Jun. 2023, doi: 10.1016/j.tbench.2023.100115.

S. Budi et al., “IBAtS - Image Based Attendance System: A Low Cost Solution to Record Student Attendance in a Classroom,” in 2018 IEEE International Symposium on Multimedia (ISM), IEEE, Dec. 2018, pp. 259–266. doi: 10.1109/ISM.2018.00037.

N. Hermanto, N. -, and N. R. D. R. Riyanto, “Aplikasi Sistem Presensi Mahasiswa Berbasis Android,” Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, vol. 10, no. 1, pp. 107–116, Apr. 2019, doi: 10.24176/simet.v10i1.2799.

K. Keller, M. Ott, O. Hinz, and A. Klein, “Influence of Social Relationships on Decisions in Device-to-Device Communication,” IEEE Access, vol. 9, pp. 106459–106475, 2021, doi: 10.1109/ACCESS.2021.3099857.

C. Seng Keau, C. Kim On, M. H. Ahmad Hijazi, and M. Mahinderjit Singh, “Smart-Hadir – Mobile Based Attendance Management System,” International Journal of Interactive Mobile Technologies (iJIM), vol. 15, no. 14, p. 4, Jul. 2021, doi: 10.3991/ijim.v15i14.22677.

M. Smith and S. Miller, “The ethical application of biometric facial recognition technology,” AI Soc, vol. 37, no. 1, pp. 167–175, Mar. 2022, doi: 10.1007/s00146-021-01199-9.

S. Dargan and M. Kumar, “A comprehensive survey on the biometric recognition systems based on physiological and behavioral modalities,” Expert Syst Appl, vol. 143, p. 113114, Apr. 2020, doi: 10.1016/j.eswa.2019.113114.

V. Wati, K. Kusrini, H. Al Fatta, and N. Kapoor, “Security of facial biometric authentication for attendance system,” Multimed Tools Appl, vol. 80, no. 15, pp. 23625–23646, Jun. 2021, doi: 10.1007/s11042-020-10246-4.

U. Iqbal, S. Englehardt, and Z. Shafiq, “Fingerprinting the Fingerprinters: Learning to Detect Browser Fingerprinting Behaviors,” in 2021 IEEE Symposium on Security and Privacy (SP), IEEE, May 2021, pp. 1143–1161. doi: 10.1109/SP40001.2021.00017.

N. D. N. Nanda, R. M. Akbar, and Y. D. Rosita, “Implementasi Geolocation Dan Pengenalan Wajah Pada Aplikasi Presensi Mahasiswa PKL Berbasis Android,” SEMINAR NASIONAL FAKULTAS TEKNIK, vol. 2, no. 1, pp. 122–127, Sep. 2023, doi: 10.36815/semastek.v2i1.137.

A. Broekman and P. J. Gräbe, “A low-cost, mobile real-time kinematic geolocation service for engineering and research applications,” HardwareX, vol. 10, p. e00203, Oct. 2021, doi: 10.1016/j.ohx.2021.e00203.

C. Wullems, M. Looi, and A. Clark, “Enhancing the security of Internet applications using location: a new model for tamper-resistant GSM location,” in Proceedings of the Eighth IEEE Symposium on Computers and Communications. ISCC 2003, IEEE Comput. Soc, pp. 1251–1258. doi: 10.1109/ISCC.2003.1214286.

Andre and M. F. Suciadi, “The online attendance system models for educational institutions,” 2022, p. 050011. doi: 10.1063/5.0080180.

C. Ukamaka Betrand, C. Juliet Onyema, M. Eberechi Benson-Emenike, and D. Allswell Kelechi, “Authentication System Using Biometric Data for Face Recognition,” International Journal of Sustainable Development Research, Nov. 2023, doi: 10.11648/j.ijsdr.20230904.12.

S. Laki, P. Matray, P. Haga, T. Sebok, I. Csabai, and G. Vattay, “Spotter: A model based active geolocation service,” in 2011 Proceedings IEEE INFOCOM, IEEE, Apr. 2011, pp. 3173–3181. doi: 10.1109/INFCOM.2011.5935165.

M. S. Mohammed and K. A. Zidan, “Enhancing attendance tracking using animated QR codes: a case study,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 31, no. 3, p. 1716, Sep. 2023, doi: 10.11591/ijeecs.v31.i3.pp1716-1723.

H. Xia, Z. Liu, M. Efremochkina, X. Liu, and C. Lin, “Study on city digital twin technologies for sustainable smart city design: A review and bibliometric analysis of geographic information system and building information modeling integration,” Sustain Cities Soc, vol. 84, p. 104009, Sep. 2022, doi: 10.1016/j.scs.2022.104009.

M. Yusuf, R. V. H. Ginardi, and A. S. Ahmadiyah, “Rancang Bangun Aplikasi Absensi Perkuliahan Mahasiswa dengan Pengenalan Wajah,” Jurnal Teknik ITS, vol. 5, no. 2, Dec. 2016, doi: 10.12962/j23373539.v5i2.17518.

M. O. Oloyede, G. P. Hancke, and H. C. Myburgh, “A review on face recognition systems: recent approaches and challenges,” Multimed Tools Appl, vol. 79, no. 37–38, pp. 27891–27922, Oct. 2020, doi: 10.1007/s11042-020-09261-2.

T. A. Kumar, R. Rajmohan, M. Pavithra, S. A. Ajagbe, R. Hodhod, and T. Gaber, “Automatic Face Mask Detection System in Public Transportation in Smart Cities Using IoT and Deep Learning,” Electronics (Basel), vol. 11, no. 6, p. 904, Mar. 2022, doi: 10.3390/electronics11060904.

K. H. Rahouma and A. Z. Mahfouz, “Applying Mobile Intelligent API Vision Kit and Normalized Features for Face Recognition Using Live Cameras,” 2021, pp. 413–429. doi: 10.1007/978-3-030-76346-6_38.

J. Pandey and A. R. Asati, “Lightweight convolutional neural network architecture implementation using TensorFlow lite,” International Journal of Information Technology, vol. 15, no. 5, pp. 2489–2498, Jun. 2023, doi: 10.1007/s41870-023-01320-9.

R. C. Sigitta, R. H. Saputra, and F. Fathulloh, “Deteksi Penyakit Tomat melalui Citra Daun menggunakan Metode Convolutional Neural Network,” AVITEC, vol. 5, no. 1, p. 43, Feb. 2023, doi: 10.28989/avitec.v5i1.1404.




DOI: https://doi.org/10.55601/jsm.v25i1.1223

Refbacks

  • There are currently no refbacks.