Pengenalan Captcha dengan Multivalued Image Decomposition dan Vector Space Image Recognition

Irpan Pardosi, Pahala Sirait, Michael Oktando, Wilham Wilham

Abstract


Completely Automated Public Turing Tests to Tell Computers and Humans Apart (CAPTCHA) merupakan program untuk meningkatkan keamanan web. Pengenalan CAPTCHA menggunakan aplikasi sering mengalami kegagalan karena posisi dari simbol yang terlalu rapat, juga karena sulitnya melatih simbol baru jika gagal dikenali. Metode Naive Pattern Recognition Algorithm salah satu metode yang belum memberikan hasil yang maksimal karena kesalahan pada proses pengenalan simbol tidak dapat dilatih kembali sehingga aplikasi tetap tidak akan mengenali simbol tersebut. Metode Multivalued Image Decomposition dan Vector Space Image Recognition dapat memberikan hasil yang lebih maksimal dengan menggunakan Training Set, dimana simbol yang tidak dikenali akan dilatih/training agar proses pengenalan simbol selanjutnya lebih akurat. Pengujian dilakukan terhadap CAPTCHA dengan berbagai warna background, CAPTCHA dengan simbol yang saling berdekatan (menyatu) dan kombinasi warna simbol dengan background yang berbeda. Untuk CAPTCHA dengan simbol berukuran berbeda dan saling terhubung, tidak dapat dikenali. Dengan threshold 0.90, hasil pengujian dengan training set yang dilakukan terhadap dengan algoritma ini menunjukkan akurasi tingkat keberhasilan sebesar 87%.


Keywords


CAPTCHA, Multivalued Image Decomposition, Vector Space Image Recognition, training set

Full Text:

PDF


DOI: https://doi.org/10.55601/jsm.v17i2.334

Refbacks

  • There are currently no refbacks.